Forecasting intraspecific changes in distribution of a wide-ranging marine predator under climate change

Published on
17 November 2021

Forecasting intraspecific changes in distribution of a wide-ranging marine predator under climate change

Niella, Y., Butcher, P., Holmes, B. et al.


Globally, marine animal distributions are shifting in response to a changing climate. These shifts are usually considered at the species level, but individuals are likely to differ in how they respond to the changing conditions. Here, we investigate how movement behaviour and, therefore, redistribution, would differ by sex and maturation class in a wide-ranging marine predator. We tracked 115 tiger sharks (Galeocerdo cuvier) from 2002 to 2020 and forecast class-specific distributions through to 2030, including environmental factors and predicted occurrence of potential prey. Generalised Linear and Additive Models revealed that water temperature change, particularly at higher latitudes, was the factor most associated with shark movements. Females dispersed southwards during periods of warming temperatures, and while juvenile females preferred a narrow thermal range between 22 and 23 °C, adult female and juvenile male presence was correlated with either lower (< 22 °C) or higher (> 23 °C) temperatures. During La Niña, sharks moved towards higher latitudes and used shallower isobaths. Inclusion of predicted distribution of their putative prey significantly improved projections of suitable habitats for all shark classes, compared to simpler models using temperature alone. Tiger shark range off the east coast of Australia is predicted to extend ~ 3.5° south towards the east coast of Tasmania, particularly for juvenile males. Our framework highlights the importance of combining long-term movement data with multi-factor habitat projections to identify heterogeneity within species when predicting consequences of climate change. Recognising intraspecific variability will improve conservation and management strategies and help anticipate broader ecosystem consequences of species redistribution due to ocean warming.

Oecologia (2021). DOI: 10.1007/s00442-021-05075-7


Leave a Reply