Evidence of diverse movement strategies and habitat use by white sharks off southern Australia

Published on
04. June 2020

Evidence of diverse movement strategies and habitat use by white sharks, Carcharodon carcharias, off southern Australia

Russell Bradford, T. A. Patterson, P. J. Rogers, R. McAuley, S. Mountford, C. Huveneers, R. Robbins, A. Fox, B. D. Bruce

ABSTRACT:

Large endothermic pelagic sharks are highly migratory and use habitats spanning a broad range of coastal, neritic and oceanic areas. This study aimed to resolve the current lack of information on the movements and habitat use of white sharks, Carcharodon carcharias, between shelf, slope and oceanic areas located off southwestern Australia. Movement behaviours, spatial distribution patterns and vertical habitat use of juvenile, sub-adult and adult white sharks ranging in size from 1.9 to 5.7 m total length were examined using 43 satellite tags deployed over 15 years. Pop-up satellite archival tags and satellite-linked radio tags collected 3663 days and > 109,900 km of tracking data over periods of up to 381 days. We demonstrated sex-based differences in movement and distribution patterns of male (21) and female (19) white sharks. Female dispersal was broader and extended further offshore than males, which largely remained in neritic and gulf habitats. Female white sharks experienced a narrower range of water temperatures (F = 9.0–19.0 °C; M = 10.4–24.8 °C). Despite these subtle differences, both sexes showed an affinity to the Neptune Island Group and the shelf slope canyons of the eastern Great Australian Bight, which are productive and oceanographically complex regions that support known prey of white sharks. This study highlighted that the southern-western Australian population of white sharks use off-shelf habitat to a greater extent than previously identified. Findings have potential implications for: ecological risk assessments of fisheries that operate in these offshore habitats and for monitoring and managing marine protected areas.

Mar Biol 167, 96 (2020) DOI: 10.1007/s00227-020-03712-y

SOURCE (OPEN ACCESS)

Leave a Reply