Evolutionary origins and development of saw-teeth on the sawfish and sawshark rostrum

paper8Published on 02. September 2015

Evolutionary origins and development of saw-teeth on the sawfish and sawshark rostrum (Elasmobranchii; Chondrichthyes)

Monique Welten, Moya Meredith Smith, Charlie Underwood, Zerina Johanson


A well-known characteristic of chondrichthyans (e.g. sharks, rays) is their covering of external skin denticles (placoid scales), but less well understood is the wide morphological diversity that these skin denticles can show. Some of the more unusual of these are the tooth-like structures associated with the elongate cartilaginous rostrum ‘saw’ in three chondrichthyan groups: Pristiophoridae (sawsharks; Selachii), Pristidae (sawfish; Batoidea) and the fossil Sclerorhynchoidea (Batoidea). Comparative topographic and developmental studies of the ‘saw-teeth’ were undertaken in adults and embryos of these groups, by means of three-dimensional-rendered volumes from X-ray computed tomography. This provided data on development and relative arrangement in embryos, with regenerative replacement in adults. Saw-teeth are morphologically similar on the rostra of the Pristiophoridae and the Sclerorhynchoidea, with the same replacement modes, despite the lack of a close phylogenetic relationship. In both, tooth-like structures develop under the skin of the embryos, aligned with the rostrum surface, before rotating into lateral position and then attaching through a pedicel to the rostrum cartilage. As well, saw-teeth are replaced and added to as space becomes available. By contrast, saw-teeth in Pristidae insert into sockets in the rostrum cartilage, growing continuously and are not replaced. Despite superficial similarity to oral tooth developmental organization, saw-tooth spatial initiation arrangement is associated with rostrum growth. Replacement is space-dependent and more comparable to that of dermal skin denticles. We suggest these saw-teeth represent modified dermal denticles and lack the ‘many-for-one’ replacement characteristic of elasmobranch oral dentitions.

Royal Society Open Science 2: 150189. DOI: 10.1098/rsos.150189



Leave a Reply