Structure, composition, and mechanical properties of shark teeth

Published online on 05. April 2012

 Structure, composition, and mechanical properties of shark teeth

Joachim Enax, Oleg Prymak, Dierk Raabe, Matthias Epple

ABSTRACT:

The teeth of two different shark species (Isurus oxyrinchus and Galeocerdo cuvier) and a geological fluoroapatite single crystal were structurally and chemically characterized. In contrast to dentin, enameloid showed sharp diffraction peaks which indicated a high crystallinity of the enameloid. The lattice parameters of enameloid were close to those of the geological fluoroapatite single crystal. The inorganic part of shark teeth consisted of fluoroapatite with a fluoride content in the enameloid of 3.1 wt.%, i.e., close to the fluoride content of the geological fluoroapatite single crystal (3.64 wt.%). Scanning electron micrographs showed that the crystals in enameloid were highly ordered with a special topological orientation (perpendicular towards the outside surface and parallel towards the center). By thermogravimetry, water, organic matrix, and biomineral in dentin and enameloid of both shark species were determined. Dentin had a higher content of water, organic matrix, and carbonate than enameloid but contained less fluoride. Nanoindentation and Vicker’s microhardness tests showed that the enameloid of the shark teeth was approximately six times harder than the dentin. The hardness of shark teeth and human teeth was comparable, both for dentin and enamel/enameloid. In contrast, the geological fluoroapatite single crystal was much harder than both kinds of teeth due to the absence of an organic matrix. In summary, the different biological functions of the shark teeth (“tearing” for Isurus and “cutting” for Galeocerdo) are controlled by the different geometry and not by the chemical or crystallographic composition.

J Struct Biol. 2012 Apr 5. [Epub ahead of print] dx.doi.org/10.1016/j.jsb.2012.03.012

SOURCE

 

Leave a Reply