Mitochondrial DNA Reveals Small-scale Population Structure in the California Horn Shark
Little Sharks in a Big World: Mitochondrial DNA Reveals Small-scale Population Structure in the California Horn Shark (Heterodontus francisci)
Sean J Canfield, Felipe Galván-Magaña, Brian W Bowen
ABSTRACT:
The California horn shark (Heterodontus francisci) is a small demersal species distributed from southern California and the Channel Islands to Baja California and the Gulf of California. These nocturnal reef predators maintain small home-ranges as adults, and lay auger-shaped egg cases that become wedged into the substrate. While population trends are not well documented, this species is subject to fishing pressure through portions of its range and has been identified as vulnerable to overexploitation. Here we present a survey of 318 specimens from across the range, using mtDNA control region sequences to provide the first genetic assessment of H. francisci. Overall population structure (ΦST = 0.266, P < 0.001) is consistent with limited dispersal as indicated by life history, with two distinct features. Population structure along the continuous coastline is low, with no discernable breaks from Santa Barbara, CA to Bahia Tortugas (Baja California Sur, Mexico); however, there is a notable partition at Punta Eugenia (BCS), a well-known biogeographic break between tropical and subtropical marine faunas. In contrast, population structure is much higher (max ΦST = 0.601, P < 0.05) between the coast and adjacent Channel Islands, a minimum distance of 19 km, indicating that horn sharks rarely disperse across deep habitat and open water. Population structure in most elasmobranchs is measured on a scale of hundreds to thousands of kilometers, but the California Horn Shark has population partitions on an unprecedented small scale, indicating a need for localized management strategies which ensure adequate protection of distinct stocks.
Journal of Heredity, esac008, DOI: 10.1093/jhered/esac008